Correlation of Liquid Heat Capacities for Carboxylic Esters

Joseph C. Phillips*

National Bureau of Standards, Washington, D.C. 20234

M. M. Mattamal

Howard University, Washington, D.C. 20001

Liquid heat capacity data of carboxylic esters (including a sebacate series, triglyceride series, and oligomer series), covering a temperature range from 20 to about 180 °C and a molecular weight range from 116 to 939, were determined with a differential scanning calorimeter. The data, together with published heat capacity values, were reduced to a temperature independent correlation. The results suggest an approximate additivity in carboxyl content and a lack of dependence on structural type (e.g., linear, branched, or oligomeric).

Liquid heat capacity is an important thermodynamic property of a substance and is useful in the description of the thermal motion of its molecules. Although carboxylic esters are used extensively in industrial applications (as solvents, plasticizers, etc.), few liquid heat capacity data exist as a function of temperature covering a wide molecular weight range. Estimation methods (8) for liquid heat capacity are generally available at or near 25 °C, and thus find limited use when applied to compounds having melting points greater than 25 °C. This paper reports the liquid heat capacity of a sebacate series, triglyceride series, and oligomer series obtained with a differential scanning calorimeter. These results, together with published data for alkanes and esters, were adequately correlated.

Experimental

The compounds used are presented in Tables I, II, and IV– VII. The methods of preparation and characterization of the linear dialkyl sebacate esters (4), branched triglyceride esters (4), and oligomer esters of poly(hexamethylene sebacate) are available (6, 7). The liquid heat capacity data for the sebacates, triglycerides, and oligomer esters were obtained on the differential scanning calorimeter (DSC-1B, Perkin-Elmer) (7). Ten-milligram samples were sealed in aluminum pans and scanned at a rate of 10 °C/min over ranges of approximately 30 degrees. Scans were repeated for the reference and a standard 28.7-mg sapphire. The results were reproducible to about $\pm 5\%$. The liquid heat capacity data for the simple esters and hydrocarbons were taken from the literature (5, 9).

Results

The liquid heat capacity of an ester molecule may be considered linear (3, 7, 8) in the number of alkane groups, N_i , and in the number of ester groups, N_{coo} ,

$$C_{p}(I) = \sum_{i=1}^{4} G_{i}(T)N_{i} + G_{coo}(T, N_{2})N_{coo}$$
(1)

where the sum in Equation 1 represents the contribution due to the alkane portion and $G_{coo}(T, N_2)N_{coo}$, that due to the ester groups [Symbols and notations are those used by Somayajalu and Zwolinski (*J. Chem. Soc. and Faraday Trans.*)]. For i = 1, 2, 3, and 4, the alkane groups are, respectively,

For all of the compounds considered here, N_4 is zero. The temperature dependent coefficients for the alkane and carboxyl groups are, respectively, $G_i(T)$ and $G_{coo}(T, N_2)$, where the latter is assumed to be also a function of N_2 (7). We will estimate the coefficients and then calculate $C_p(I)$ according to Equation 1.

Table I. Reduced Liquid Heat Capacity Data for *n*-Alkanes Used to Determine K_{12} , Ratio of Temperature Coefficients $G_1(T)$ to $G_2(T)$ [$C_p(l)$ Data Taken from Ref. 9]

Formula	No. of temp values	Temp range, °C	$\left(\frac{\lambda_1}{N_1}\right)_{AV}^a$
C,H16	33	-88.16-96.84	3.605 ± 0.072
	22	-48.13-69.70	4.554 ± 0.018
C10H22	17	-26.14-45.46	5.042 ± 0.021
C11H24	12	-21.42-25.76	5.541 ± 0.018
C12H26	11	-6.47-44.25	6.044 ± 0.014
C13H28	8	-0.50-33.17	6.543 ± 0.011
C14H30	7	9.55-29.61	7.048 ± 0.003
C1,H3,	7	12.35-39.62	7.558 ± 0.009
CIGH	9	22.25-47.12	8.059 ± 0.008
C, H,	5	60-100	12.702 ± 0.085
C 3,H 68	4	80-110	16.861 ± 0.029

^{*a*} Average for the number of temperature values given with the standard error of estimate as the estimate of precision, where $\lambda_1 = C_p(l)/G_2(T)$.

Table II. Reduced Liquid Heat Capacity Data for Substituted *n*-Alkanes Used to Determine K_{32} , Ratio of Temperature Coefficients $G_3(T)$ to $G_2(T)$ [$C_p(l)$ Data Taken from Ref. 9]

Compound	No. of temp values	Temp range, °C	$\left(\frac{\lambda_3}{N_3}\right)_{\rm AV}^a$
2,4-Dimethyl-	40	-112.34-33.94	1.372 ± 0.135
2,3-Dimethyl- hexane	3	124.34-249.04	1.657 ± 0.162
3,4-Dimethyl-	3	133.54-249.44	1.666 ± 0.148
2-Methyl-	19	-112.74-28.02	3.866 ± 0.129
3-Ethyl-	46	-127.96-25.64	3.706 ± 0.156
3-Ethyl- hexane	3	123.94–249.54	4.313 ± 0.294

^{*a*} Average for the number of temperature values given with the standard error of estimate as the estimate of precision, where $\lambda_3 = [C_p(l)/G_2(T)] - K_{12}N_1$.

The molecular weight of the ester molecule may be represented as

$$M = \sum_{i=1}^{4} W_i N_i + W_{coo} N_{coo}$$
(2)

where W_i and W_{coo} are the respective weights of the alkane groups and carboxyl group (i.e., $W_1 = 15.0$, $W_2 = 14.0$, $W_3 = 13.0$, $W_4 = 12.0$, and $W_{coo} = 44.0$).

Temperature dependent coefficients for alkane groups. Only the coefficients for i = 1, 2, and 3 will be considered here $(N_4 = 0)$. The coefficient, $G_2(7)$, has been estimated from *n*-alkane data by Broadhurst (1) as

$$G_2(T) = 0.00818 \ T + 5.00 \tag{3}$$

where T is the absolute temperature and the units are calories per degree per mole. By expanding the sum in Equation 1 and setting $N_{coo} = 0$, Equation 1 becomes

$$C_p(I) = G_1(T)N_1 + G_2(T)N_2 + G_3(T)N_3 \tag{4}$$

Table III. Estimated Values for Ratios K_{12} and K_{32} Determined According to Equations 5 and 6

Ratio	Estd value
$\overset{K_{12}}{\overset{K_{32}}{K_{32}}}$	1.03 0.80

For the case of *n*-alkanes ($N_3 = 0$), Equation 4 may be rearranged to the following reduced form:

$$\frac{\lambda_1}{N_1} = \frac{C_p(1)/G_2(T)}{N_1} = \frac{N_2}{N_1} + K_{12}$$
(5)

where $\lambda_1 = C_p(f)/G_2(T)$ is assumed temperature independent, and the ratio $K_{12} = G_1(T)/G_2(T)$ is assumed to be constant. Using the results of Equation 5, Equation 4 may be rearranged again as follows:

$$\frac{\lambda_3}{N_3} = \frac{\left[C_p(1)/G_2(T)\right] - K_{12}N_1}{N_3} = \frac{N_2}{N_3} + K_{32} \tag{6}$$

where $\lambda_3 = [C_p(I)/G_2(T)] - K_{12}N_1$ is also assumed to be temperature independent, and the ratio $K_{32} = G_3(T)/G_2(T)$ is assumed to be constant. Alkane data from Timmermans (9), which are summarized in Tables I and II, were used to evaluate the constants in Equations 5 and 6. The constant K_{12} was first estimated from *n*-alkane data by plotting $(\lambda_1/N_1)_{\rm AV}$ vs. N_2/N_1 , and the constant K_{32} was estimated from a plot of $(\lambda_3/N_3)_{\rm AV}$ vs. N_2/N_3 by using Equation 6. Hence, the estimated coefficients are given, respectively, as $G_1(T) = K_{12}G_2(T)$ and $G_3(T) = K_{32}G_2(T)$. The estimated values for K_{12} and K_{32} are given in Table III.

Temperature dependent coefficient for carboxyl group. From a development analogous to that used for Equations 5 and 6, the reduced expression for the carboxyl group is given as

Table IV. Liquid	Heat Capacity,	$C_{p}(l)$, at	Various	Temperatures o	of Linear	Esters of	Sebacic Se	ries
	0	⁶ 0						
	II.							
$CH_3 - (CH_2)_X - $	-OC(CH ₂)) ₈ C(⊃—– (СН₂	$X - CH_3$				

A 5 1/								
Compound	Empirical formula	MW	Liqui	d heat capa	city, cal/deg	g mol		$\left(\frac{\lambda_{\rm coo}}{N_{\rm coo}}\right)^a_{\rm AV}$
Di- <i>n</i> -butyl sebacate	C ₁₈ H ₃₄ O ₄	314.45	T, K: 312 C_p , expti: 148 C_p , calcd: 150 % Dev: -14	337 152 154 1 3	362 163 158 3 1	387 164 162	412 179 167 6 7	9.08 ± 0.58
Di- <i>n</i> -hexyl sebacate	C ₂₂ H ₄₂ O ₄	370.34	T, K: 315 $C_p, expt1: 175$ $C_p, calcd: 179$ % Dev: -23	340 177 184 4 0	365 198 189 4 6	390 201 194 3 5	414 206 199 34	10.94 ± 0.48
Di-n-octyl sebacate	C ₂₆ H ₅₀ O ₄	426.00	T, K: 318 $C_p, exptl: 203$ $C_p, calcd: 209$ % Dev:	343 208 214 	368 210 220 	393 219 225 	5.4	12.24 ± 0.11
Di- n -decyl sebacate	C 30 H 58 O4	482.79	T, K: 368 $C_p, exptl: 240$ $C_p, calcd: 250$ % Dev: -4.2	393 251 256 2.0	403 266 259 2.6	2.7		14.40 ± 0.54
Di-n-dodecyl sebacate	C 34 H 66 O 4	539.00	T, K: 368 $C_p, exptl: 267$ $C_p, calcd: 280$ % Dev: -4.9	398 283 289 	408 288 292 1 4			15.98 ± 0.32
Di- <i>n</i> -tetra decyl sebacate	C ₃₈ H ₇₄ O ₄	595.00	T, K: 343 $C_p, exptl: 298$ $C_p, calcd: 303$ % Dev: -1.7	353 308 306 0.65	378 321 314 2.2	418 342 327 4 4	433 340 332 2 4	18.70 ± 0.46
Di-n-hexa decyl sebacate	C ₄₂ H ₈₂ O ₄	651.36	T, K: 353 $C_p, exptl: 349$ $C_p, calcd: 336$ % Dev: 3.7	368 347 341 1 7	378 355 348 2 0	418 384 350 6 5		21.09 ± 0.49
Di- <i>n</i> -octa decyl sebacate	C ₄₆ H ₉₀ O ₄	707.36	T, K: 353 $C_p, exptl: 354$ $C_p, calcd: 366$ % Dev:34	368 374 372 0.54	378 357 376	403 365 385	453 370 404	21.18 ± 0.76
Average error	3.	.3%	/ DCV. J.4	0.54	5.5	5.5	3.2	

Standard error of estimate 1.9

^{*a*} Average for the temperatures given with the standard error of estimate as the estimate of precision, where $\lambda_{coo} = C_p(l)/G_2(T) - K_{12}N_1$.

$$\frac{\lambda_{\rm coo}}{N_{\rm coo}} = \frac{N_2}{N_{\rm coo}} + K_{\rm coo} \tag{7}$$

where λ_{coo} is also assumed to be temperature independent, and K_{coo} , the ratio of $G_{coo}(T, N_2)$ to $G_2(T)$, according to Equation 1 is assumed to be dependent on the number of methylene groups, N_2 . The lambda function for the carboxyl group $(N_4 = 0)$ is given as

$$\lambda_{\rm coo} = C_p(I)/G_2(T) - [K_{12}N_1 + K_{32}N_3]$$
(8)

From data in Tables IV-VII and the use of Equation 7, the ratio of coefficients was empirically separated as a function of N_2 to yield

$$K_{\rm coo} = F(N_2) + c = \frac{-0.025 N_2 + 1.40}{1 + 0.00015(N_2)^2} + 0.90$$
 (9)

where the form of $F(N_2)$ was chosen only to best represent the data. Therefore, Equation 7 with $N_4 = 0$ may be rewritten as

$$\lambda_{coo}' = \frac{\lambda_{coo}}{N_{coo}} - F(N_2) = \frac{N_2}{N_{coo}} + 0.90$$
(10)

In Figure 1 we show a plot of λ'_{coo} vs. N_2/N_{coo} . The solid line was drawn according to Equation 10 with a slope of 1 and an intercept of 0.90. From Equations 8–10, the liquid heat capacity in calories per degree per mole is given as

$$C_{p}(I) = \left[\left(\frac{N_{2}}{N_{coo}} + K_{coo} \right) N_{coo} + K_{12}N_{1} + K_{32}N_{3} \right] G_{2}(T)$$
(11)

The procedure for utilizing Equation 11 may be shown from a typical calculation. For example, diethyl succinate $(CH_3CH_2OOCCH_2CH_2COOCH_2CH_3)$: $N_1 = 2$; $N_2 = 4$; $N_3 = 0$; $N_{coo} = 2$; $G_2(293.15 \text{ K}) = 7.398$; $K_{12} = 1.03$; $F(N_2) = 1.30$; $K_{coo} = 2.20$; therefore, $C_p(I) = [(4/2 + 2.20) \times 2 + (1.03 \times 2)] \times 7.398 = 77.3$ (deviation = 2.23%). The data in Tables IV-VII were calculated using Equation 11 with an average error of 2.5%, the average standard estimate of error being 1.7. Thus, the correlation of Equation 10 reasonably represents the data in this study.

By solving Equation 2 for N_2 and inserting the results into Equation 1, the simplified expression ($N_4 = 0$) in calories per degree per mole becomes

Table V. Liquid Heat Capacity, Cp (1), at Various Temperatures of Branched Esters of Triglyceride Series

$$CH_{3} - (CH_{2})_{X} - C - CH_{2} - CH_{3}$$

X = 2 - 16

©ompound	Empirical formula	MW	Liqui	d heat capac	city, cal/deg	mol		$\left(\frac{\lambda_{\rm coo}}{N_{\rm coo}}\right)_{\rm AV}^{a}$
Tributyrin	C ₁₅ H ₂₆ O ₆	302.37	T, K: 313 C_p , expt1: 136 C_p , calcd: 137 K Dov: -0.74	338 148 141 4 7	363 145 145	388 150 148	413 161 152	4.87 ± 0.18
Tricaproin	C ₂₁ H ₃₈ O ₆	386.50	T, K: 313 $C_p, expt1: 180$ $C_p, calcd: 179$ $C_p, calcd: 179$	4.7 338 179 184 2 8	0.0 363 196 188 4 1	1.3 388 195 193	413 204 198 2 9	6.67 ± 0.23
Trioctanoin	C ₂₇ H ₅₀ O ₆	470.69	T, K: 338 $C_p, expt1: 220$ $C_p, calcd: 226$ K Dav: -27	2:0 388 234 238 —1 7	413 234 244 	1.0	2.5	8.12 ± 0.12
Tridecanoin	C ₃₃ H ₆₂ O ₆	554.86	T, K: 313 $C_p, exptl: 265$ $C_p, calcd: 262$	363 284 276	388 283 283			10.39 ± 0.17
Trilaurin	C 39 H 74 O 6	639.02	T, K: 323 $C_p, expt1: 312$ $C_p, calcd: 307$	2.3 348 309 315	373 326 323	398 333 332 0 30		13.92 ± 0.52
Trimyristin	C ₄₅ H ₈₆ O ₆	723.18	C_p , expt1: 354 C_p , calcd: 353	-1.9 358 365 362 0.82	383 387 372 3 9	408 382 381 0.26	433 369 390	13.92 ± 0.52
Tripalmitin	C ₅ ,H ₉₈ O ₆	807.34	T, K: 343 $C_p, expt1: 398$ $C_p, calcd: 400$ $C_p, calcd: 50$	368 413 411 0.48	3.9 393 445 421 5.4	418 452 432 4 4	5.7	16.07 ± 0.55
Tristearin	C ₅₇ H ₁₁₀ O ₆	890.50	T, K: 353 $C_p, expt1: 472$ $C_p, calcd: 449$ K = 0	378 498 461 7 4	403 494 472 4 4	428 494 484 2 0	453 513 496 3.3	18.55 ± 0.42
Average error Standard error	2. r of estimate 2.	.5% .0	70 DCv. 4.9	/	r	2.0	0.0	

^a Average for the temperatures given with the standard error of estimate as the estimate of precision, where $\lambda_{coo} = C_p(l)/G_2(T) - [K_{12}N_1 + K_{32}N_3]$.

$$C_{p}(I) = [G_{2}(T)/W_{2}]M + \Delta_{coo}N_{coo} + \Delta_{1}N_{1} + \Delta_{3}N_{3} \quad (12)$$

where for the alkanes, $\Delta_j = G_j(T) - [G_2(T)/W_2]W_j$, j = 1 and 3; and for the carboxyl group, $\Delta_{coo} = G_{coo}(T, N_2) - [G_2(T)/W_2]W_{coo}$.

The results shown in Figure 2 at 20 °C ($N_4 = 0$) were calculated from Equation 12. The plot shows that the effect of carboxyl addition to an alkane chain is to reduce the heat capacity proportionally to the number of carboxyl groups in the chain. If the heat capacity depends on both molecular weight and carboxyl content, then an oligomeric series is formed as shown by the dotted line in Figure 2. By transforming Equation 12 to calories per degree per gram (by dividing both sides of the equation by M), one may examine the limiting value for an oligomer series at infinite chain length (molecular weight goes to infinity), i.e.,

$$\lim_{M \to \infty} C_p(I)/M = G_2(T)/W_2$$

$$[c - W_{coo}/W_2]G_2(T) \lim_{M \to \infty} N_{coo}/M \quad (13)$$

Equation 13 allows a rough estimate of flexibility effects (2) for esters in the polymer regime. For example, Equation 13 predicts at 20 °C for the oligomers of this study a limiting value of 0.42 vs. a value of 0.53 for the *n*-alkanes.

Conclusions

The results presented here allow an easy estimation of liquid heat capacity to about 3% for carboxylic esters as a function of temperature and molecular weight where only N_2 , $N_{\rm coo}$, and the alkane groups, (i.e., N_1 and N_3) must be known; the type of structure is unimportant if the correlation of Equation 10 is used. A variation of 5% in $\lambda_{\rm coo}/N_{\rm coo}$ causes the calculated heat capacity to vary about 5%. Hence, the error estimate of $\lambda_{\rm coo}/N_{\rm coo}$ in Tables IV–VI is within the error of the experimental values of $C_p(I)$.

Acknowledgment

The authors express their appreciation to the National Bureau of Standards for the use of its facilities.

Table VI. Liquid Heat Capacity, $C_p(l)$, at Various Temperatures of Linear Oligomer Esters of Poly(hexamethylene sebacate) $CH_3 - (CH_2)_5 - OOC - (CH_2)_6 - OOC - (CH_2)_8 - COO]_{X-1} - (CH_2)_5 - CH_3$ X = 1, 2, 3, ...

X	Empirical formula	MW			Liquid he	eat capacity	/, cal/deg n	nol			$\left(\frac{n_{\rm coo}}{N_{\rm coo}}\right)_{\rm AV}$
1 C ₂₂ H ₄₂ O ₄	370.34	T, K: $C_p, expti:$ $C_p, calcd:$	303 170 177 	313 171 179 	323 173 181	343 182 185 1.6	373 195 191 2 0	383 199 192	393 200 194	10.70 ± 0.42	
2	C ₃₈ H ₇₀ O ₈	654.56	T, K: $C_p, exptl:$ $C_p, calcd:$	328 309 305	4.7 365 316 317 	-4.5 388 322 325 0 93	408 331 331	2.0	3.5	5.0	9.42 ± 0.09
3	$C_{54}H_{98}O_{12}$	938.78	T, K: $C_p, exptl:$ $C_p, calcd:$ % Dev:	333 437 422 3.4	373 442 440 0.45	413 451 458 	433 455 466 2.4				8.76 ± 0.24

Standard error of estimate 1.6

^{*a*} Average for the temperatures given with the standard error of estimate as the estimate of precision, where $\lambda_{coo} = C_p(l)/G_2(T) - K_{12}N_1$.

Table VII. Liquid Heat Capacity, $C_p(l)$, at 293.15 K of Carboxylic Esters (Data Taken from Ref. 5)

		Liquid	$(\lambda_{coo})^{c}$		
Compound	MW	Exptl	Calcd	% Dev	$\left(\frac{1}{N_{coo}}\right)$
i-Butyl acetate	116.1	53.3	53.9	-1.13	5.14
Ethyl valerate	130.2	59.8	61.1	-2.17	6.02
Propyl valerate	144.2	66.2	68.3	-3.17	6.88
Diethyl oxalate	146.1	63.3	63.3	0.00	3.25
Butyl valerate	158.2	72.6	75.5	-3.99	7.75
Diethyl malonate	160.1	69.3	70.3	-1.44	3.65
Diethyl succinate	174.9	79.06	77.3	2.23	4.31
Dibutyl oxalate	202.2	89.2	91.3	-2.35	5.00
Diisoamyl oxalate	230.3	103.4	105.3	$-1.8\overline{4}$	5.96
Average error	2.04%	4			
Standard error of estimate	1.15				

 $a \lambda_{\rm coo} = C_p(l)/G_2(T) - K_{12}N_1.$

Figure 1. Reduced liquid heat capacities, $\lambda_{\text{coo}}^{\prime},$ of carboxylic esters vs. ratio of methylene groups to carboxyl groups (N2/Ncoo). Solid line calculated according to Equation 10

Nomenclature

- c = empirical constant
- $C_p(I) =$ liquid heat capacity

 $F(N_2)$ = empirical function of number of methylene groups $G_{coo}(T, N_2)$ = temperature dependent coefficient of the carboxyl group (as a function of N_2)

 $G_i(T)$ = temperature dependent coefficient of alkane groups; *j* = 1, 2, 3, 4

- = alkane groups $(1 = CH_3; 2 = CH_2; 3 = CH; 4 = C)$
- $K_{\text{coo}} = G_{\text{coo}}(T, N_2)/G_2(T) = F(N_2) + c = \text{ratio of coeffi-}$ cient of carboxyl group to that of coefficient of methylene group

 $K_{j2} = G_j(T)/G_2(T)$ = ratio of coefficient of j group to that of coefficient of methylene group; i = 1, 3, and 4

 λ_{coo} = temperature independent function of carboxyl group

 λ_j = temperature independent function of alkane groups; j = 1, 3, and 4

 $N_{\rm coo}$ = number of carboxyl group per molecule

 N_i = number of alkane groups per molecule; j = 1, 2, 3, 4 W_{coo} = molecular weight of carboxyl group

 W_i = molecular weight of alkane groups; j = 1, 2, 3, 4

Figure 2. Calculated liquid heat capacities according to Equation 12 vs. molecular weight: A, $N_{coo} = 0$ (*n*-alkanes); B, $N_{coo} = 1$ (monocarboxylics); C, $N_{coo} = 2$ (dicarboxylics and sebacates); D, $N_{coo} = 3$ (triglycerides); E, $N_{coo} = 2, 4, 6, \dots$ (oligomers)

Literature Cited

- (1) Broadhurst, M. G., J. Res. Nat. Bur. Stand., 67A (Phys. and Chem.), 233 (1963).
- (2) Hobbs, S. Y., Billmeyer, Jr., F. W., J. Polym. Sci., A2 (8), 1387, 1395 (1970).

- Huggins, M. L., *J. Phys. Chem.*, **43**, 1083 (1939).
 Mattamal, G., PhD thesis, American Univ., Washington, D.C., 1970.
 Papchaiyappan, V., Ibrahim, S. H., Kuloor, N. B., *Chem. Eng.*, **24**1 (1967).
- Phillips, J. C., MS thesis, American Univ., Washington, D.C., 1972. (6)
- (7) Phillips, J. C., Wall, L. A., Aldridge, M. A., Polym. Eng. Sci., 15, 73 (1975).
- (1975).
 (8) Reid, R. C., Sherwood, T. K., "Properties of Gases and Liquids: Their Estimation and Correlation", McGraw-Hill, New York, N.Y., 1966.
 (9) Timmermans, J., "Physico-Chemical Constants of Pure Organic Compounds", Vols I, II, Elsevier, New York, N.Y., 1960, 1965.

Received for review February 10, 1975. Accepted September 22, 1975.